1) Find a unit normal vector to the surface at the given point.

a)
$$x^2 y^3 - y^2 z + 2xz^3 = 4$$
, $(-1, 1, -1)$
b) $\sin(x - y) - z = 2$, $\left(\frac{\pi}{3}, \frac{\pi}{6}, -\frac{3}{2}\right)$

2) Find an equation of the tangent plane to the surface at the given point.

a) $z = x^2 + y^2 + 3$, (2,1,8)

b)
$$x = y(2z-3), (4,4,2)$$

- 3) Find an equation of the tangent plane and find symmetric equations of the normal line to the surface at the given point.
 - a) xyz = 10, (1, 2, 5)
 - b) $y \ln xz^2 = 2$, (e, 2, 1)

- 4) Given the surface $x^2 + y^2 + z^2 = 14$ and the surface x y z = 0 find the following:
 - a) Symmetric equations of the tangent line to the curve of intersection of the surfaces at the point (3,1,2).
 - b) The cosine of the angle between the gradient vectors at the point (3,1,2).
 - c) Determine whether or not the surfaces are orthogonal at the point of intersection (3,1,2).

- 5) Find the angle of inclination θ of the tangent plane to the surface at the given point.
 - a) $3x^2 + 2y^2 z = 15$, (2,2,5) b) $x^2 + y^2 = 5$, (2,1,3)

- 6) Find the point(s) on the surface at which the tangent plane is horizontal.
 - a) $z = 3 x^2 y^2 + 6y$
 - b) z = 5xy

7) Show that the surfaces $x^2 + 2y^2 + 3z^2 = 3$ and $x^2 + y^2 + z^2 + 6x - 10y + 14 = 0$ are tangent to each other at the point (-1, 1, 0) by showing that the surfaces have the same tangent plane at this point.

8) Show that the surfaces $z = 2xy^2$ and $8x^2 - 5y^2 - 8z = -13$ intersect at the point (1,1,2), and show that the surfaces have perpendicular tangent planes at this point.

9) Find the point on the hyperboloid $x^2 + 4y^2 - z^2 = 1$ where the tangent plane is parallel to the plane x + 4y - z = 0.

10) Find parametric equations for the tangent line to the curve of intersection of the paraboloid $z = x^2 + y^2$ and the ellipsoid $4x^2 + y^2 + z^2 = 9$ at the point (-1,1,2).