1) Find a unit normal vector to the surface at the given point.
a) $x^{2} y^{3}-y^{2} z+2 x z^{3}=4,(-1,1,-1)$
b) $\sin (x-y)-z=2,\left(\frac{\pi}{3}, \frac{\pi}{6},-\frac{3}{2}\right)$
2) Find an equation of the tangent plane to the surface at the given point.
a) $z=x^{2}+y^{2}+3,(2,1,8)$
b) $x=y(2 z-3),(4,4,2)$
3) Find an equation of the tangent plane and find symmetric equations of the normal line to the surface at the given point.
a) $x y z=10,(1,2,5)$
b) $y \ln x z^{2}=2,(e, 2,1)$
4) Given the surface $x^{2}+y^{2}+z^{2}=14$ and the surface $x-y-z=0$ find the following:
a) Symmetric equations of the tangent line to the curve of intersection of the surfaces at the point $(3,1,2)$.
b) The cosine of the angle between the gradient vectors at the point $(3,1,2)$.
c) Determine whether or not the surfaces are orthogonal at the point of intersection $(3,1,2)$.
5) Find the angle of inclination θ of the tangent plane to the surface at the given point.
a) $3 x^{2}+2 y^{2}-z=15,(2,2,5)$
b) $x^{2}+y^{2}=5,(2,1,3)$
6) Find the point(s) on the surface at which the tangent plane is horizontal.
a) $z=3-x^{2}-y^{2}+6 y$
b) $z=5 x y$
7) Show that the surfaces $x^{2}+2 y^{2}+3 z^{2}=3$ and $x^{2}+y^{2}+z^{2}+6 x-10 y+14=0$ are tangent to each other at the point $(-1,1,0)$ by showing that the surfaces have the same tangent plane at this point.
8) Show that the surfaces $z=2 x y^{2}$ and $8 x^{2}-5 y^{2}-8 z=-13$ intersect at the point $(1,1,2)$, and show that the surfaces have perpendicular tangent planes at this point.
9) Find the point on the hyperboloid $x^{2}+4 y^{2}-z^{2}=1$ where the tangent plane is parallel to the plane $x+4 y-z=0$.
10) Find parametric equations for the tangent line to the curve of intersection of the paraboloid $z=x^{2}+y^{2}$ and the ellipsoid $4 x^{2}+y^{2}+z^{2}=9$ at the point $(-1,1,2)$.
